Finding LCM and GCF - The Korean Way

Don't you wish there was an easier way to compute common multiples and greatest factors? There is! A parent showed me the Korean way. It gives you both LCM and GCF at the same time.

Find the GCF and LCM of 6 and 18.

1.	Write 6 ar Leave son) 6, 18	
2.	Think of <i>a</i> Let's use 2	<i>any</i> common factor. 2.	3, 9 2) 6, 18
3.		and 18 by the common factor. result above, as in regular division.	
4.		e results, and find another common factor. 3, and continue the long division of both numbers.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5.	If you can But you ca	○ ¹ , ³	
6.	Now all the Together to GCF = 2 >	3) 3, 9 2) 6, 18	
7.	The remain Take <i>all</i> the LCM = 2	$ \begin{array}{c} 1, & 3\\ 3 & 3, & 9\\ 2 & 6, & 18\\ \end{array} $	
Ex	ample:	Find the GCF and LCM of 16 and 18.	
		$GCF = 2$ $LCM = 2 \times 8 \times 9 = 144$	$\frac{8, 9}{2)16, 18}$
Ex	kample:	Find the GCF and LCM of 9 and 18.	1, 2
		$GCF = 3 \times 3 = 9$ LCM = $3 \times 3 \times 1 \times 2 = 18$	3)3, 6 3)9, 18

Using the Korean Way with Three Numbers

The Korean method of solving LCM and GCF can be extended to three numbers. However, the process is a little more complicated because you need to keep track of which factors are common to all three numbers, and which factors only apply to two factors.

Ex	ample:	Find the GCF and LCM of 6 and 9 and 12.	
1.		three numbers side by side. om for doing long division.) 6, 9, 12
2.	Let's star	any common factor. t with 3. results above, as in regular division.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3.		ne results, and find another common factor. at 2 is a common factor for only two numbers.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4.	Divide through by 2, but only on two numbers.36, 9, 12Copy the remaining number (3) so we don't forget it.36, 9, 12		
5.	But don't	common factors are listed on the left. include the 2 because it is not common to all three numbers! see where you need to keep track of commonality.)	
6.	along the Take <i>all</i> t	is composed of all the factors on the left <i>and</i> all the factors top. This is the same as with just working on two numbers. he factors together to make the LCM! $\times 2 \times 1 \times 3 \times 2 = 36$	1, 3, 2 2) 2, 3, 4 3) 6, 9, 12
Example:		Find the GCF and LCM of 3, 6, 9.	1 2 2
		GCF = 3 LCM = $3 \times 1 \times 2 \times 3 = 36$	$\frac{1, 2, 3}{3)3, 6, 9}$
Ex	ample:	Find the GCF and LCM of 10, 15, 20.	
		Note that 5 is common to all three numbers. But 2 cannot divide into 3. So we copy 3 onto the top row so we don't overlook it.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$GCF = 5$ $LCM = 5 \times 2 \times 1 \times 3 \times 2 = 60$	5)10, 15, 20