WSMA Math Bowl- March 7, 2015

Answer Sheet: MS Creativity Round

Total Points

Earned:

/25

Problem 1

Sample solution: (1+1+1)!

lath Bow

Accept any solution that uses exactly 3 ones (no other numbers) and evaluates to 6.

use) Question 1 – Total Points Earned:
--

Problem 2

Rewrite to $x^4 = 5y+2$. x,y>0, and x^4 never ends in 2 or 7 for integer x, and 5y+2 always ends in 2 or 7, so for no integer x do they end with the same units digit, and are therefore never equal.

Problem 3

Put one white coin in one bowl and put 9 white coins and 10 black coins in the other.

5

(For official use) Question 3 – Total Points Earned:

Problem 4

The patter is $a + b = a^2 - b^2$, so $99^2 - 33^2 = 8712$ for full 5 points.

If there is another way to evaluate a+b that works for all a+b given and results in a different answer for 99 + 33, award 4/5 points.

(For official use) Question 4 – Total Points Earned:	/
	, 5

Problem 5

If a and b are not relatively prime, factor out their common factor to make $f^*(a'x+b'y) = 1$, where f, a', x, b', and y are all integers because f is a factor. a'x+b'y = 1/f. The left hand side is the sum of integers, so it is an integer. 1/f is not an integer because f=/1, so the LHS and RHS are not equal. Therefore, for ax+by =1, a and b must be relatively prime, by contradiction.