1. (Without using calculus) Determine the slope (m) of the tangent line " $y=m x+2$ " to the parabola $" y=x^{2}+5 x+6$ ".
2. Let f be a real-valued function such that

$$
f(x)+2 f\left(\frac{2002}{x}\right)=3 x
$$

for all $x>0$. Find $f(2)$.

Problem Solving Method 3:

Change the problem to one you know how to deal with

Example: Determine the slope (m) of the tangent line " $y=m x+2$ " to the parabola " $y=x^{2}+5 x+6$ ".

- What you might not know: Calculus
- What you do know: Algebra and Geometry

Normally, the derivative is used in this situation to find tangent slopes to a function, which is in this case a parabola. However, we can change the problem to one that is easier to deal with by simply observing the definition of a tangent line:

A tangent line intersects a function in only one spot

Thus, we can solve for the slope m by setting the equations $y=m x+2$ and $y=x^{2}+5 x+6$ equal to each other and giving m a value that makes the solution a complete square.

