## Problem Solving Method 1:

## Test the first few values of " n " and look for patterns

Example: Find the remainder when $7^{2008}$ is divided by 19.

- Test: What are the remainders of $7^{n}$ when divided by 19 ?
- When $\mathrm{n}=1$, the value becomes 7 and the remainder is 7
- When $\mathrm{n}=2$, the value becomes 49 and the remainder is 11
- When $n=3$, the value becomes 343 and the remainder is 1
- When $n=4$, the value becomes 2401 and the remainder is 7
- When $\mathrm{n}=5$, the value becomes 16807 and the remainder is 11

At this point, we notice a recurring pattern of 7,11, and 1 as the remainders. This cycle repeats itself for every three values of " n ".

Assuming this pattern holds, we find the remainder when $7^{2008}$ is divided by 19 by taking the remainder of 2008/3, which is 1 .

Therefore, $7^{2008}$ has the same remainder as $7^{1}$ and the answer is 7 , the remainder we found when $n=1$. Thus, C is the correct answer.

## Problem Solving Method 2:

## Use only the necessary information to avoid complex calculations

It is difficult to calculate larger powers and take remainders of larger numbers without using a calculator. Fortunately, there is a shorter method.

It is possible to calculate remainders of powers without evaluating the powers themselves.

Why is this? Each time a number is divided, it is split into a quotient (a number divisible by the divisor, ex. 19) and a remainder (a positive integer smaller than 19).

The remainder is the only necessary information. The quotient is irrelevant, because it is already divisible by 19 and multiplying it by $\mathbf{7}$ won't change its divisibility.

Thus, all we need to do in order to find the remainder of $7^{n+1}$ is to multiply the remainder of $7^{n}$ by seven, and divide by 19 if necessary.

Our problem now is much simpler, and looks like:

- Test: What are the remainders of $7^{n}$ when divided by 19 ?
- When $\mathrm{n}=1$, the value becomes $7 \times 1=7$ and the remainder is 7
- When $\mathrm{n}=2$, the value becomes $7 \times 7=49$ and the remainder is $\mathbf{1 1}$
- When $\mathrm{n}=3$, the value becomes $7 \times 11=77$ and the remainder is 1
- When $n=4$, the value becomes $7 \times 1=7$ and the remainder is 7
- When $\mathrm{n}=5$, the value becomes $7 \times 7=49$ and the remainder is 11

Using this method, the reason that the values repeat and follow a cycle of three becomes much clearer.

